LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DNA Methylation Signatures and the Contribution of Age-Associated Methylomic Drift to Carcinogenesis in Early-Onset Colorectal Cancer

Photo by philinit from unsplash

Simple Summary The role of DNA methylation in the carcinogenesis of colorectal cancer (CRC) diagnosed 50 years of age. CpGs that undergo ageing-related methylation drift were significantly altered in EOCRC,… Click to show full abstract

Simple Summary The role of DNA methylation in the carcinogenesis of colorectal cancer (CRC) diagnosed <50 years of age (early-onset CRC or EOCRC) is currently unknown. In this study, we investigated the genome-wide DNA methylation of 97 tumour and 54 normal colonic mucosa samples from people with EOCRC with the aim of identifying unique DNA methylation signatures and determining the role of ageing-related DNA methylation drift and age-acceleration in EOCRC aetiology. We found extensive DNA methylation alterations associated with EOCRC carcinogenesis, including a unique signature comprising 234 loci compared with CRCs from people >50 years of age. CpGs that undergo ageing-related methylation drift were significantly altered in EOCRC, and accelerated ageing was also evident in normal mucosa from people with EOCRC. Our study is the first study to identify unique DNA methylation changes in EOCRC, contributing novel information that may aid future efforts towards EOCRC prevention. Abstract We investigated aberrant DNA methylation (DNAm) changes and the contribution of ageing-associated methylomic drift and age acceleration to early-onset colorectal cancer (EOCRC) carcinogenesis. Genome-wide DNAm profiling using the Infinium HM450K on 97 EOCRC tumour and 54 normal colonic mucosa samples was compared with: (1) intermediate-onset CRC (IOCRC; diagnosed between 50–70 years; 343 tumour and 35 normal); and (2) late-onset CRC (LOCRC; >70 years; 318 tumour and 40 normal). CpGs associated with age-related methylation drift were identified using a public dataset of 231 normal mucosa samples from people without CRC. DNAm-age was estimated using epiTOC2. Common to all three age-of-onset groups, 88,385 (20% of all CpGs) CpGs were differentially methylated between tumour and normal mucosa. We identified 234 differentially methylated genes that were unique to the EOCRC group; 13 of these DMRs/genes were replicated in EOCRC compared with LOCRCs from TCGA. In normal mucosa from people without CRC, we identified 28,154 CpGs that undergo ageing-related DNAm drift, and of those, 65% were aberrantly methylated in EOCRC tumours. Based on the mitotic-based DNAm clock epiTOC2, we identified age acceleration in normal mucosa of people with EOCRC compared with normal mucosa from the IOCRC, LOCRC groups (p = 3.7 × 10−16) and young people without CRC (p = 5.8 × 10−6). EOCRC acquires unique DNAm alterations at 234 loci. CpGs associated with ageing-associated drift were widely affected in EOCRC without needing the decades-long accrual of DNAm drift as commonly seen in intermediate- and late-onset CRCs. Accelerated ageing in normal mucosa from people with EOCRC potentially underlies the earlier age of diagnosis in CRC carcinogenesis.

Keywords: drift; methylation; age; normal mucosa; dna methylation

Journal Title: Cancers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.