LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

UBE2M Drives Hepatocellular Cancer Progression as a p53 Negative Regulator by Binding to MDM2 and Ribosomal Protein L11

Photo from wikipedia

Simple Summary Herein, the oncogenic role of UBE2M as an E2 NEDD8-conjugating enzyme was explored in hepatocellular carcinoma (HCC) cells, since neddylation plays a critical role in tumorigenesis. To address… Click to show full abstract

Simple Summary Herein, the oncogenic role of UBE2M as an E2 NEDD8-conjugating enzyme was explored in hepatocellular carcinoma (HCC) cells, since neddylation plays a critical role in tumorigenesis. To address this issue, human tissue array and TCGA analysis were conducted in HCCs to find overexpression of UBE2M in HCCs. In addition, a differential profile was confirmed in UBE2M-depleted HepG2 cells. Furthermore, UBE2M depletion activated p53 expression and stability, while the ectopic expression of UBE2M disturbed p53 activation and enhanced degradation of exogenous p53 mediated by MDM2 in HepG2 cells via binding to MDM2 and ribosomal protein L11 by immunoprecipitation and immunofluorescence. These findings provide evidence that UBE2M is critically involved in liver cancer progression as a p53 negative regulator by binding to MDM2 and ribosomal protein L11. Abstract Though UBE2M, an E2 NEDD8-conjugating enzyme, is overexpressed in HepG2, Hep3B, Huh7 and PLC/PRF5 HCCs with poor prognosis by human tissue array and TCGA analysis, its underlying oncogenic mechanism remains unclear. Herein, UBE2M depletion suppressed viability and proliferation and induced cell cycle arrest and apoptosis via cleavages of PARP and caspase 3 and upregulation of p53, Bax and PUMA in HepG2, Huh7 and Hep3B cells. Furthermore, UBE2M depletion activated p53 expression and stability, while the ectopic expression of UBE2M disturbed p53 activation and enhanced degradation of exogenous p53 mediated by MDM2 in HepG2 cells. Interestingly, UBE2M binds to MDM2 or ribosomal protein L11, but not p53 in HepG2 cells, despite crosstalk between p53 and UBE2M. Consistently, the colocalization between UBE2M and MDM2 was observed by immunofluorescence. Notably, L11 was required in p53 activation by UBE2M depletion. Furthermore, UBE2M depletion retarded the growth of HepG2 cells in athymic nude mice along with elevated p53. Overall, these findings suggest that UBE2M promotes cancer progression as a p53 negative regulator by binding to MDM2 and ribosomal protein L11 in HCCs.

Keywords: protein l11; ribosomal protein; mdm2 ribosomal; p53; binding mdm2

Journal Title: Cancers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.