LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genomic Abnormalities as Biomarkers and Therapeutic Targets in Acute Myeloid Leukemia

Photo from wikipedia

Simple Summary AML is a heterogenous malignancy with a variety of underlying genomic abnormalities. Some of the genetic aberrations in AML have led to the development of specific inhibitors which… Click to show full abstract

Simple Summary AML is a heterogenous malignancy with a variety of underlying genomic abnormalities. Some of the genetic aberrations in AML have led to the development of specific inhibitors which were approved by the Food and Drug Administration (FDA) and are currently used to treat eligible patients. In this review, we describe five gene mutations for which approved inhibitors have been developed, the response of AML patients to these inhibitors, and the known mechanism(s) of resistance. This review also highlights the significance of developing function-based screens for target discovery in the era of personalized medicine. Abstract Acute myeloid leukemia (AML) is a highly heterogeneous malignancy characterized by the clonal expansion of myeloid stem and progenitor cells in the bone marrow, peripheral blood, and other tissues. AML results from the acquisition of gene mutations or chromosomal abnormalities that induce proliferation or block differentiation of hematopoietic progenitors. A combination of cytogenetic profiling and gene mutation analyses are essential for the proper diagnosis, classification, prognosis, and treatment of AML. In the present review, we provide a summary of genomic abnormalities in AML that have emerged as both markers of disease and therapeutic targets. We discuss the abnormalities of RARA, FLT3, BCL2, IDH1, and IDH2, their significance as therapeutic targets in AML, and how various mechanisms cause resistance to the currently FDA-approved inhibitors. We also discuss the limitations of current genomic approaches for producing a comprehensive picture of the activated signaling pathways at diagnosis or at relapse in AML patients, and how innovative technologies combining genomic and functional methods will improve the discovery of novel therapeutic targets in AML. The ultimate goal is to optimize a personalized medicine approach for AML patients and possibly those with other types of cancers.

Keywords: genomic abnormalities; medicine; myeloid leukemia; therapeutic targets; acute myeloid

Journal Title: Cancers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.