Simple Summary Fluoropyrimidines represent the backbone of many combination chemotherapy regimens for the treatment of solid cancers but are still associated with toxicity and mechanisms of resistance. In this review,… Click to show full abstract
Simple Summary Fluoropyrimidines represent the backbone of many combination chemotherapy regimens for the treatment of solid cancers but are still associated with toxicity and mechanisms of resistance. In this review, we focused on the epigenetic modifiers histone deacetylase inhibitors (HDACis) and on their ability to regulate specific genes and proteins involved in the fluoropyrimidine metabolism and resistance mechanisms. We presented emerging preclinical and clinical studies, highlighting the mechanisms by which HDACis can prevent/overcome the resistance and/or enhance the therapeutic efficacy of fluoropyrimidines, potentially reducing their toxicity, and ultimately improving the overall survival of cancer patients. Abstract Although fluoropyrimidines were introduced as anticancer agents over 60 years ago, they are still the backbone of many combination chemotherapy regimens for the treatment of solid cancers. Like other chemotherapeutic agents, the therapeutic efficacy of fluoropyrimidines can be affected by drug resistance and severe toxicities; thus, novel therapeutic approaches are required to potentiate their efficacy and overcome drug resistance. In the last 20 years, the deregulation of epigenetic mechanisms has been shown to contribute to cancer hallmarks. Histone modifications play an important role in directing the transcriptional machinery and therefore represent interesting druggable targets. In this review, we focused on histone deacetylase inhibitors (HDACis) that can increase antitumor efficacy and overcome resistance to fluoropyrimidines by targeting specific genes or proteins. Our preclinical data showed a strong synergistic interaction between HDACi and fluoropyrimidines in different cancer models, but the clinical studies did not seem to confirm these observations. Most likely, the introduction of increasingly complex preclinical models, both in vitro and in vivo, cannot recapitulate human complexity; however, our analysis of clinical studies revealed that most of them were designed without a mechanistic approach and, importantly, without careful patient selection.
               
Click one of the above tabs to view related content.