LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

7T HR FID-MRSI Compared to Amino Acid PET: Glutamine and Glycine as Promising Biomarkers in Brain Tumors

Photo from wikipedia

Simple Summary Magnetic resonance spectroscopic imaging is an imaging method that can map the distribution of multiple biochemicals in the human brain in one scan. Using stronger magnetic fields, such… Click to show full abstract

Simple Summary Magnetic resonance spectroscopic imaging is an imaging method that can map the distribution of multiple biochemicals in the human brain in one scan. Using stronger magnetic fields, such as 7 Tesla, allows for higher resolution images and more biochemical maps. To test these results, we compared it to positron emission tomography, the established clinical standard for metabolic imaging. This comparison mainly looked at the overlap between regions with increased signal between both methods. We found that the molecules glutamine and glycine, only mappable at 7 Tesla, corresponded better to positron emission tomography than the commonly used choline. Abstract (1) Background: Recent developments in 7T magnetic resonance spectroscopic imaging (MRSI) made the acquisition of high-resolution metabolic images in clinically feasible measurement times possible. The amino acids glutamine (Gln) and glycine (Gly) were identified as potential neuro-oncological markers of importance. For the first time, we compared 7T MRSI to amino acid PET in a cohort of glioma patients. (2) Methods: In 24 patients, we co-registered 7T MRSI and routine PET and compared hotspot volumes of interest (VOI). We evaluated dice similarity coefficients (DSC), volume, center of intensity distance (CoI), median and threshold values for VOIs of PET and ratios of total choline (tCho), Gln, Gly, myo-inositol (Ins) to total N-acetylaspartate (tNAA) or total creatine (tCr). (3) Results: We found that Gln and Gly ratios generally resulted in a higher correspondence to PET than tCho. Using cutoffs of 1.6-times median values of a control region, DSCs to PET were 0.53 ± 0.36 for tCho/tNAA, 0.66 ± 0.40 for Gln/tNAA, 0.57 ± 0.36 for Gly/tNAA, and 0.38 ± 0.31 for Ins/tNAA. (4) Conclusions: Our 7T MRSI data corresponded better to PET than previous studies at lower fields. Our results for Gln and Gly highlight the importance of future research (e.g., using Gln PET tracers) into the role of both amino acids.

Keywords: acid pet; pet; glycine; brain; glutamine glycine; amino acid

Journal Title: Cancers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.