Simple Summary This study provides novel information about the role of neutrophils in malignant pleural effusion (MPE) and hallmarks their clinical relevance. Since these cells have emerged as important regulators… Click to show full abstract
Simple Summary This study provides novel information about the role of neutrophils in malignant pleural effusion (MPE) and hallmarks their clinical relevance. Since these cells have emerged as important regulators of cancer, we characterized their phenotype and functions in MPE microenvironment. We found that neutrophil-derived products (degranulation molecules and neutrophil extracellular traps (NETs)) were increased in MPE. In addition, NETs were associated with a worse outcome in lung adenocarcinoma patients with MPE. Abstract Malignant pleural effusion (MPE) is a common severe complication of advanced lung adenocarcinoma (LAC). Neutrophils, an essential component of tumor infiltrates, contribute to tumor progression and their counts in MPE have been associated with worse outcome in LAC. This study aimed to evaluate phenotypical and functional changes of neutrophils induced by MPE to determine the influence of MPE immunomodulatory factors in neutrophil response and to find a possible association between neutrophil functions and clinical outcomes. Pleural fluid samples were collected from 47 LAC and 25 heart failure (HF) patients. We measured neutrophil degranulation products by ELISA, oxidative burst capacity and apoptosis by flow cytometry, and NETosis by fluorescence. The concentration of degranulation products was higher in MPE-LAC than in PE-HF. Functionally, neutrophils cultured with MPE-LAC had enhanced survival and neutrophil extracellular trap (NET) formation but had reduced oxidative burst capacity. In MPE, NETosis was positively associated with MMP-9, P-selectin, and sPD-L1 and clinically related to a worse outcome. This is the first study associating NETs with a worse outcome in MPE. Neutrophils likely contribute to tumor progression through the release of NETs, suggesting that they are a potential therapeutic target in LAC.
               
Click one of the above tabs to view related content.