LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemoprevention of Lung Cancer with a Combination of Mitochondria-Targeted Compounds

Photo from wikipedia

Simple Summary Previous reports showed that mitochondria-targeted honokiol and mitochondria-targeted lonidamine potently inhibit complex-I- and complexes-I/II-induced respiration and cancer cell proliferation. In this study, we investigated the efficacy of combining… Click to show full abstract

Simple Summary Previous reports showed that mitochondria-targeted honokiol and mitochondria-targeted lonidamine potently inhibit complex-I- and complexes-I/II-induced respiration and cancer cell proliferation. In this study, we investigated the efficacy of combining mitochondria-targeted honokiol and mitochondria-targeted lonidamine treatments for lung cancer prevention. We found that their combination exhibited striking tumor inhibition in the benzo[a]pyrene-induced murine lung tumor model without causing detectable side effects. Using single-cell RNA sequencing, we found combined treatment has a clear advantage in that it can significantly inhibit two oncogenic pathways—STAT3 signaling and AKT/mTOR/p70S6K signaling. Such dual inhibition may contribute to the greater efficacy of the combined drug treatment. Therefore, the combination provides a novel option for lung cancer chemoprevention. Abstract Combined treatment targeting mitochondria may improve the efficacy of lung cancer chemoprevention. Here, mitochondria-targeted honokiol (Mito-HNK), an inhibitor of mitochondrial complex I and STAT3 phosphorylation, and mitochondria-targeted lonidamine (Mito-LND), an inhibitor of mitochondrial complexes I/II and AKT/mTOR/p70S6K signaling, were evaluated for their combinational chemopreventive efficacy on mouse lung carcinogenesis. All chemopreventive treatments began one-week post-carcinogen treatment and continued daily for 24 weeks. No evidence of toxicity (including liver toxicity) was detected by monitoring serum levels of alanine aminotransferase and aspartate aminotransferase enzymes. Mito-HNK or Mito-LND treatment alone reduced tumor load by 56% and 48%, respectively, whereas the combination of Mito-HNK and Mito-LND reduced tumor load by 83%. To understand the potential mechanism(s) of action for the observed combinatorial effects, single-cell RNA sequencing was performed using mouse tumors treated with Mito-HNK, Mito-LND, and their combination. In lung tumor cells, Mito-HNK treatment blocked the expression of genes involved in mitochondrial complex ǀ, oxidative phosphorylation, glycolysis, and STAT3 signaling. Mito-LND inhibited the expression of genes for mitochondrial complexes I/II, oxidative phosphorylation, and AKT/mTOR/p70S6K signaling in lung tumor cells. In addition to these changes, a combination of Mito-HNK with Mito-LND decreased arginine and proline metabolism, N-glycan biosynthesis, and tryptophan metabolism in lung tumor cells. Our results demonstrate that Mito-LND enhanced the antitumor efficacy of Mito-HNK, where both compounds inhibited common targets (oxidative phosphorylation) as well as unique targets for each agent (STAT3 and mTOR signaling). Therefore, the combination of Mito-HNK with Mito-LND may present an effective strategy for lung cancer chemoprevention.

Keywords: mitochondria targeted; lung; mito; mito lnd; cancer; mito hnk

Journal Title: Cancers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.