Simple Summary MTI-101 is a first-in-class novel cyclic peptide shown to have anti-tumor activity in both multiple myeloma and castrate-resistant prostate in vivo cancer models. These data suggest the potential… Click to show full abstract
Simple Summary MTI-101 is a first-in-class novel cyclic peptide shown to have anti-tumor activity in both multiple myeloma and castrate-resistant prostate in vivo cancer models. These data suggest the potential for a broad spectrum of anti-cancer activity for this class of compounds. To further delineate determinants of sensitivity and resistance that were not dependent on oncogenic drivers, two isogenic drug-resistant cell lines were generated with chronic exposure to MTI-101 in a non-small cell lung cancer (NSCLC) PC-9 (EGFR driven) and a small cell lung cancer (SCLC) H446 (PTEN deleted and c-MYC amplified). Our data indicate that the chronic exposure of MTI-101 selects for a stable mesenchymal-to-epithelial (MET) genotype and phenotype in both PC-9 and H446 lung cancer cell lines. Abstract MTI-101 is a first-in-class cyclic peptide that kills cells via calcium overload in a caspase-independent manner. Understanding biomarkers of response is critical for positioning a novel therapeutic toward clinical development. Isogenic MTI-101-acquired drug-resistant lung cancer cell line systems (PC-9 and H446) coupled with differential RNA-SEQ analysis indicated that downregulated genes were enriched in the hallmark gene set for epithelial-to-mesenchymal transition (EMT) in both MTI-101-acquired resistant cell lines. The RNA-SEQ results were consistent with changes in the phenotype, including a decreased invasion in Matrigel and expression changes in EMT markers (E-cadherin, vimentin and Twist) at the protein level. Furthermore, in the EGFR-driven PC-9 cell line, selection for resistance towards MTI-101 resulted in collateral sensitivity toward EGFR inhibitors. MTI-101 treatment showed synergistic activity with the standard of care agents erlotinib, osimertinib and cisplatin when used in combination in PC-9 and H446 cells, respectively. Finally, in vivo data indicate that MTI-101 treatment selects for increased E-cadherin and decreased vimentin in H446, along with a decreased incident of bone metastasis in the PC-9 in vivo model. Together, these data indicate that chronic MTI-101 treatment can lead to a change in cell state that could potentially be leveraged therapeutically to reduce metastatic disease.
               
Click one of the above tabs to view related content.