Simple Summary Prostate cancer is one of the most common malignancies in men. Current therapies are initially effective but resistance often develops, leading to tumor recurrence and death. Further research… Click to show full abstract
Simple Summary Prostate cancer is one of the most common malignancies in men. Current therapies are initially effective but resistance often develops, leading to tumor recurrence and death. Further research on new players, mechanisms involved in prostate cancer, and therapy resistance is needed. We studied the role of DHRS7, a potential tumor suppressor with currently unknown physiological function, in prostate cancer cells using proteome and gene expression analyses. Despite the fact that DHRS7 can inactivate 5α-dihydrotestosterone, its effect on prostate cancer cells seems to be unrelated to androgen metabolism. When comparing three widely studied prostate cancer cell lines, we observed a negative correlation between DHRS7 and EGFR expression. DHRS7 knockdown enhanced EGFR expression, while knockdown of EGFR tended to increase DHRS7 expression. Importantly, DHRS7 expression negatively correlates with EGFR expression and positively with survival rates in prostate cancer patients. This study suggests a tumor-suppressor role for DHRS7 by modulating EGFR expression in prostate cancer. Abstract Prostate cancer (PCa), one of the most common malignancies in men, typically responds to initial treatment, but resistance to therapy often leads to metastases and death. The dehydrogenase/reductase 7 (DHRS7, SDR34C1) is an “orphan” enzyme without known physiological function. DHRS7 was previously found to be decreased in higher-stage PCa, and siRNA-mediated knockdown increased the aggressiveness of LNCaP cells. To further explore the role of DHRS7 in PCa, we analyzed the proteome of LNCaP cells following DHRS7 knockdown to assess potentially altered pathways. Although DHRS7 is able to inactivate 5α-dihydrotestosterone, DHRS7 knockdown did not affect androgen receptor (AR) target gene expression, and its effect on PCa cells seems to be androgen-independent. Importantly, proteome analyses revealed increased expression of epidermal growth factor receptor (EGFR), which was confirmed by RT-qPCR and Western blotting. Comparison of AR-positive LNCaP with AR-negative PC-3 and DU145 PCa cell lines revealed a negative correlation between DHRS7 and EGFR expression. Conversely, EGFR knockdown enhanced DHRS7 expression in these cells. Importantly, analysis of patient samples revealed a negative correlation between DHRS7 and EGFR expression, both at the mRNA and protein levels, and DHRS7 expression correlated positively with patient survival rates. These results suggest a protective role for DHRS7 in PCa.
               
Click one of the above tabs to view related content.