Simple Summary Melanoma is a form of skin cancer that has increased in incidence in the last few decades. The main environmental risk factor is exposure to ultraviolet radiation (UVR).… Click to show full abstract
Simple Summary Melanoma is a form of skin cancer that has increased in incidence in the last few decades. The main environmental risk factor is exposure to ultraviolet radiation (UVR). It is the fifth most common cancer in the UK, with a 17% mortality rate. There are new melanoma therapies that show improvement in patient survival; however, there is a significant proportion of patients who do not respond to approved treatments, for whom there are no second line therapies. Developing safe new therapies without significant side effects for patients is a pressing clinical challenge; 3D skin equivalents allow for disease modelling and systematic and safe drug testing for skin cancer. This paper reviews recent advances in creating 3D skin and cancer models for effective drug screening for melanoma. Abstract Melanoma is a potentially fatal cancer with rising incidence over the last 50 years, associated with enhanced sun exposure and ultraviolet radiation. Its incidence is highest in people of European descent and the ageing population. There are multiple clinical and epidemiological variables affecting melanoma incidence and mortality, such as sex, ethnicity, UV exposure, anatomic site, and age. Although survival has improved in recent years due to advances in targeted and immunotherapies, new understanding of melanoma biology and disease progression is vital to improving clinical outcomes. Efforts to develop three-dimensional human skin equivalent models using biofabrication techniques, such as bioprinting, promise to deliver a better understanding of the complexity of melanoma and associated risk factors. These 3D skin models can be used as a platform for patient specific models and testing therapeutics.
               
Click one of the above tabs to view related content.