LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Human Malignant Rhabdoid Tumor Antigens as Biomarkers and Potential Therapeutic Targets

Photo from wikipedia

Simple Summary Atypical teratoid rhabdoid tumor (ATRT) is a deadly type of human pediatric brain cancer without effective treatments. ATRT is mainly linked to the inactivation of a tumor suppressor… Click to show full abstract

Simple Summary Atypical teratoid rhabdoid tumor (ATRT) is a deadly type of human pediatric brain cancer without effective treatments. ATRT is mainly linked to the inactivation of a tumor suppressor gene, SMARCB1; however, additional biomarkers remain to be identified to develop novel therapeutic strategies. Therefore, different tumor antigens and extracellular matrix modulators were investigated in two human ATRT and one kidney malignant rhabdoid tumor cell lines and compared with the nonmalignant HEK293 cell line. Alpha-fetoprotein (AFP), mucin-16 (MUC16 or cancer antigen 125/CA125), osteopontin (OPN), and mesothelin (MSLN) are highly expressed in these human malignant rhabdoid cancer cell lines. Inhibiting MMPs using a small-molecule inhibitor decreased cell survival. This biomarker discovery process may lead to the identification of novel diagnostic and therapeutic strategies, such as the development of targeted and immunotherapies against cancer biomarkers, to treat cancer patients. Abstract Introduction: Atypical teratoid rhabdoid tumor (ATRT) is a lethal type of malignant rhabdoid tumor in the brain, seen mostly in children under two years old. ATRT is mainly linked to the biallelic inactivation of the SMARCB1 gene. To understand the deadly characteristics of ATRT and develop novel diagnostic and immunotherapy strategies for the treatment of ATRT, this study investigated tumor antigens, such as alpha-fetoprotein (AFP), mucin-16 (MUC16/CA125), and osteopontin (OPN), and extracellular matrix modulators, such as matrix metalloproteinases (MMPs), in different human malignant rhabdoid tumor cell lines. In addition, the roles of MMPs were also examined. Materials and methods: Five human cell lines were chosen for this study, including two ATRT cell lines, CHLA-02-ATRT and CHLA-05-ATRT; a kidney malignant rhabdoid tumor cell line, G401; and two control cell lines, human embryonic kidney HEK293 and HEK293T. Both ATRT cell lines were treated with a broad-spectrum MMP inhibitor, GM6001, to investigate the effect of MMPs on cell proliferation, viability, and expression of tumor antigens and biomarkers. Gene expression was examined using a reverse transcription polymerase chain reaction (RT-PCR), and protein expression was characterized by immunocytochemistry and flow cytometry. Results: All the rhabdoid tumor cell lines tested had high gene expression levels of MUC16, OPN, AFP, and MSLN. Low expression levels of neuron-specific enolase (ENO2) by the two ATRT cell lines demonstrated their lack of neuronal genotype. Membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14) and tissue inhibitor of metalloproteinases-2 (TIMP-2) were highly expressed in these malignant rhabdoid tumor cells, indicating their invasive phenotypes. GM6001 significantly decreased ATRT cell proliferation and the gene expression of MSLN, OPN, and several mesenchymal markers, suggesting that inhibition of MMPs may reduce the aggressiveness of rhabdoid cancer cells. Conclusion: The results obtained from this study may advance our knowledge of the molecular landscapes of human malignant rhabdoid tumors and their biomarkers for effective diagnosis and treatment. This work analyzed the expression of human malignant rhabdoid tumor antigens that may serve as biomarkers for the development of novel therapeutic strategies, such as cancer vaccines and targeted and immunotherapies targeting osteopontin and mesothelin, for the treatment of patients with ATRT and other malignant rhabdoid tumors.

Keywords: cell; malignant rhabdoid; rhabdoid tumor; cell lines; tumor

Journal Title: Cancers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.