LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Elaiophylin Inhibits Tumorigenesis of Human Lung Adenocarcinoma by Inhibiting Mitophagy via Suppression of SIRT1/Nrf2 Signaling

Photo by _louisreed from unsplash

Simple Summary Lung adenocarcinoma (LADC) is the pathological type with the highest morbidity and mortality among lung cancers. Although achievements in new therapeutic approaches have been developed, chemotherapy is still… Click to show full abstract

Simple Summary Lung adenocarcinoma (LADC) is the pathological type with the highest morbidity and mortality among lung cancers. Although achievements in new therapeutic approaches have been developed, chemotherapy is still the most widely choice for control of LADC. However, the increasing drug resistance becomes the major challenge, so the development of the novel and efficient chemotherapeutic drug is still urgent. Elaiophylin, a new type of autophagy inhibitor, has been shown to possess unique anti-cancer activity. In this study, we have deeply investigated the therapeutic effect of elaiophylin on LADC and found elaiophylin exerts its anti-cancer effect though inhibiting mitophagy and oxidative stress and targeting SIRT1/Nrf2 signaling. This innovative and comprehensive research may provide the possibility for the development of novel chemotherapy drug for LADC. Abstract Lung adenocarcinoma (LADC), the most common type of lung cancer, is still one of the most aggressive and rapidly fatal tumor types, even though achievements in new therapeutic approaches have been developed. Elaiophylin as a C2 symmetrically glycosylated 16 macrolides has been reported to be a late-stage autophagy inhibitor with a potent anti-tumor effect on various cancers. This study investigated the anti-tumor effect of elaiophylin on human LADC for the first time in in vitro and in vivo models. The in vitro study in LADC A549 cells showed that elaiophylin significantly inhibited cell viability and induced cell apoptosis through the suppression of mitophagy and induction of cellular and mitochondrial oxidative stress. Proteomic analysis and molecular docking assay implicated that SIRT1 was likely the direct target of elaiophylin in A549 cells. Further mechanistic study verified that elaiophylin reduced Nrf2 deacetylation, expression, and transcriptional activity as well as cytoplasm translocation by downregulating SIRT1 expression and deacetylase activity. Additionally, SIRT1/Nrf2 activation could attenuate elaiophylin-induced mitophagy inhibition and oxidative stress. The in vivo study in the A549-xenograft mice model showed that the anti-tumor effect of elaiophylin was accompanied by the decreased expressions of SIRT1, Nrf2, Parkin, and PINK1. Thus, the present study reports that elaiophylin has potent anti-tumor properties in LADC, which effect is likely mediated through suppressing the SIRT1/Nrf2 signaling. In conclusion, elaiophylin may be a novel drug candidate for LADC and SIRT1 may be a new therapeutic target for such devastating malignancy.

Keywords: sirt1 nrf2; lung adenocarcinoma; effect; nrf2 signaling; lung; elaiophylin

Journal Title: Cancers
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.