LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ru Nanoparticles Embedded in Cubic Mesoporous Silica SBA-1 as Highly Efficient Catalysts for Hydrogen Generation from Ammonia Borane

Photo from wikipedia

Cubic mesoporous silica SBA-1 functionalized with carboxylic acid (-COOH), namely S1B-C10, is used as a support to fabricate and confine Ru nanoparticles (NPs). The uniformly dispersed organic functional groups in… Click to show full abstract

Cubic mesoporous silica SBA-1 functionalized with carboxylic acid (-COOH), namely S1B-C10, is used as a support to fabricate and confine Ru nanoparticles (NPs). The uniformly dispersed organic functional groups in SBA-1 are beneficial in attracting Ru cations, and as a result, homogenously distributed small sized Ru NPs are formed within the mesopores. The prepared Ru@S1B-C10 is utilized as a catalyst for H2 generation from the hydrolysis of ammonia borane (AB). The Ru@S1B-C10 catalyst demonstrates high catalytic activity for H2 generation (202 mol H2 molRu min−1) and lower activation energy (24.13 kJ mol−1) due to the small sized Ru NPs with high dispersion and the support’s interconnected mesoporous structure. The nanosized Ru particles provide abundant active sites for the catalytic reaction to take place, while the interconnected porous support facilitates homogenous transference and easy dispersal of AB molecules to the active sites. The catalyst demonstrates good recycle ability since the accumulation and leaking of NPs throughout catalysis can be effectively prevented by the support.

Keywords: ammonia borane; mesoporous silica; generation; silica sba; cubic mesoporous

Journal Title: Catalysts
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.