LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sustainable Method for the Synthesis of Alternative Bis(2-Ethylhexyl) Terephthalate Plasticizer in the Presence of Protic Ionic Liquids

Photo from wikipedia

Inexpensive Brønsted acidic ionic liquids based on trimethylamine and sulfuric acid are proposed as both solvents and catalysts in the synthesis of alternative plasticizer bis(2-ethylhexyl) terephthalate, which has a broad… Click to show full abstract

Inexpensive Brønsted acidic ionic liquids based on trimethylamine and sulfuric acid are proposed as both solvents and catalysts in the synthesis of alternative plasticizer bis(2-ethylhexyl) terephthalate, which has a broad spectrum of applications in plasticization processes. The utilization of 50 mol % of Brønsted ionic liquid led to the full conversion of terephthalic acid after 8 h of reaction at 120 ◦C. Additionally, a 100% selectivity of bis(2-ethylhexyl) terephthalate was obtained. The advantage of the presented reaction system is based on the formation of a biphasic system during the reaction. The bottom phase consists of an ionic liquid and water, and the upper phase is created by the ester and unreacted alcohol. This phenomenon helps overcome the equilibrium of the reaction and drives it towards a high yield of product. The presented new approach is proposed as a safe, cost-effective, and alternative method to conventional processes with organometallic compounds that, in turn, leads to greener and a more economically viable technology.

Keywords: bis ethylhexyl; ionic liquids; ethylhexyl terephthalate

Journal Title: Catalysts
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.