LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Immobilization of Catalase on Chitosan/ZnO and Chitosan/ZnO/Fe2O3 Nanocomposites: A Comparative Study

The strong catalytic performance, eco-friendly reaction systems, and selectivity of enzyme-based biocatalysts are extremely interesting. Immobilization has been shown to be a good way to improve enzyme stability and recyclability.… Click to show full abstract

The strong catalytic performance, eco-friendly reaction systems, and selectivity of enzyme-based biocatalysts are extremely interesting. Immobilization has been shown to be a good way to improve enzyme stability and recyclability. Chitosan-incorporated metal oxides, among other support matrices, are an intriguing class of support matrices for the immobilization of various enzymes. Herein, the cross-linked chitosan/zinc oxide nanocomposite (CS/ZnO) was synthesized and further improved by adding iron oxide (Fe2O3) nanoparticles. The final cross-linked CS/ZnO/Fe2O3 nanocomposite was used as an immobilized support for catalase and is characterized by SEM, EDS, and FTIR. The nanocomposite CS/ZnO/Fe2O3 enhanced the biocompatibility and immobilized system properties. CS/ZnO/Fe2O3 achieved a higher immobilization yield (84.32%) than CS/ZnO (37%). After 10 repeated cycles, the remaining immobilized catalase activity of CS/ZnO and CS/ZnO/Fe2O3 was 14% and 45%, respectively. After 60 days of storage at 4 °C, the remaining activity of immobilized enzyme onto CS/ZnO and CS/ZnO/Fe2O3 was found to be 32% and 47% of its initial activity. The optimum temperature was noticed to be broad at 25–30 °C for the immobilized enzyme and 25 °C for the free enzyme. Compared with the free enzyme optimum pH (7.0), the optimum pH for the immobilized enzyme was 7.5. The Km and Vmax values for the free and immobilized enzyme on CS/ZnO, and the immobilized enzyme on CS/ZnO/Fe2O3, were found to be 91.28, 225.17, and 221.59 mM, and 10.45, 15.87, and 19.92 µmole ml−1, respectively. Catalase immobilization on CS/ZnO and CS/ZnO/Fe2O3 offers better stability than free catalase due to the enzyme’s half-life. The half-life of immobilized catalase on CS/ZnO/Fe2O3 was between 31.5 and 693.2 min.

Keywords: zno fe2o3; catalase; chitosan zno; immobilized enzyme; zno

Journal Title: Catalysts
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.