LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimized Synthesis Routes of MnOx-ZrO2 Hybrid Catalysts for Improved Toluene Combustion

Photo by martinadams from unsplash

In this contribution, the three Mn-Zr catalysts with MnxZr1−xO2 hybrid phase were synthesized by two-step precipitation route (TP), conventional coprecipitation method (CP) and ball milling process (MP). The components, textural… Click to show full abstract

In this contribution, the three Mn-Zr catalysts with MnxZr1−xO2 hybrid phase were synthesized by two-step precipitation route (TP), conventional coprecipitation method (CP) and ball milling process (MP). The components, textural and redox properties of the Mn-Zr hybrid catalysts were studied via XRD, BET, XPS, HR-TEM, H2-TPR. Regarding the variation of synthesis routes, the TP and CP routes offer a more obvious advantage in the adjustment of the concentration of MnxZr1−xO2 solid solution compared to the MP process, which directly commands the content of Mn4+ and oxygen vacancy and lattice oxygen, and thereby leads to the enhanced mobility of reactive oxygen species and catalytic activity for toluene combustion. Moreover, the TP-Mn2Zr3 catalyst with the enriched exposure content of 51.4% for the defective (111) lattice plane of MnxZr1−xO2 exhibited higher catalytic activity and thermal stability for toluene oxidation than that of the CP-Mn2Zr3 sample with a value of 49.3%. This new observation will provide a new perspective on the design of bimetal catalysts with a higher VOCs combustion abatement.

Keywords: toluene combustion; combustion; mnxzr1 xo2; hybrid catalysts; synthesis routes

Journal Title: Catalysts
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.