Selective catalytic reduction (SCR) is an effective system for treating nitrogen oxides (NOx; mainly NO), and fast SCR requires the equimolar reactants of NO and NO2. This study focused on… Click to show full abstract
Selective catalytic reduction (SCR) is an effective system for treating nitrogen oxides (NOx; mainly NO), and fast SCR requires the equimolar reactants of NO and NO2. This study focused on catalysts for oxidizing 50% of NO to NO2. A series of catalysts composed of a variety of components, such as mesoporous mMnO2-nCeO2 as carrier catalysts (m:n = 9:1 and 7:3) and transition metals (e.g., Fe, Co, Ni, Cu, and Cr), were synthesized and characterized using N2 adsorption, in situ XRD, TEM, and XPS. All samples had a mesoporous structure with pore size around 8 nm. XPS results demonstrated that addition of cerium ion increased the surface area and provided oxygen vacancy due to the formation of Ce3+ within the structure. NO oxidation activity was tested using a feed (205~300 ppm NO and 6% O2) that simulated typical flue gas conditions. Doped mesoporous mMnO2–nCeO2 has higher NO oxidation activity than pristine mMnO2–nCeO2. The doped mMnO2-nCeO2 catalyzed 50% of NO to NO2 at between 140 and 200 °C resulting in an equivalent amount of NO and NO2. Among the transition metals, Cu, Ni, Co, Fe, and Cr have the highest to lowest oxidation activity, respectively. The precatalytic oxidation of NO can potentially be combined with the current SCR system without changes to existing equipment and can be applied to the exhaust gas treatment for de-NOx.
               
Click one of the above tabs to view related content.