LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Catalytical Performance of Heteroatom Doped and Undoped Carbon-Based Materials

Photo from wikipedia

Developing cost-effective, eco-friendly, efficient, stable, and unique catalytic systems remains a crucial issue in catalysis. Due to their superior physicochemical and electrochemical properties, exceptional structural characteristics, environmental friendliness, economic productivity,… Click to show full abstract

Developing cost-effective, eco-friendly, efficient, stable, and unique catalytic systems remains a crucial issue in catalysis. Due to their superior physicochemical and electrochemical properties, exceptional structural characteristics, environmental friendliness, economic productivity, minimal energy demand, and abundant supply, a significant amount of research has been devoted to the development of various doped carbon materials as efficient catalysts. In addition, carbon-based materials (CBMs) with specified doping have lately become significant members of the carbon group, showing promise for a broad range of uses (e.g., catalysis, environmental remediation, critical chemical production, and energy conversion and storage). This study will, therefore, pay attention to the function of heteroatom-based doped and undoped CBMs for catalytical applications and discuss the underlying chemistries of catalysis. According to the findings, doping CBMs may greatly improve their catalytic activity, and heteroatom-doped CBMs may be a promising option for further metal doping to attach them to an appropriate place. This paper also covers the potential applications of both doped and undoped CBMs in the future.

Keywords: carbon based; carbon; doped undoped; based materials; heteroatom doped

Journal Title: Catalysts
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.