LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of Efficiencies and Mechanisms of Catalytic Ozonation of Recalcitrant Petroleum Refinery Wastewater by Ce, Mg, and Ce-Mg Oxides Loaded Al2O3

The use of catalytic ozonation processes (COPs) for the advanced treatment of recalcitrant petroleum refinery wastewater (RPRW) is rapidly expanding. In this study, magnesium (Mg), cerium (Ce), and Mg-Ce oxide-loaded… Click to show full abstract

The use of catalytic ozonation processes (COPs) for the advanced treatment of recalcitrant petroleum refinery wastewater (RPRW) is rapidly expanding. In this study, magnesium (Mg), cerium (Ce), and Mg-Ce oxide-loaded alumina (Al2O3) were developed as cost efficient catalysts for ozonation treatment of RPRW, having performance metrics that meet new discharge standards. Interactions between the metal oxides and the Al2O3 support influence the catalytic properties, as well as the efficiency and mechanism. Mg-Ce/Al2O3 (Mg-Ce/Al2O3-COP) reduced the chemical oxygen demand by 4.7%, 4.1%, 6.0%, and 17.5% relative to Mg/Al2O3-COP, Ce/Al2O3-COP, Al2O3-COP, and single ozonation, respectively. The loaded composite metal oxides significantly increased the hydroxyl radical-mediated oxidation. Surface hydroxyl groups (–OHs) are the dominant catalytic active sites on Al2O3. These active surface –OHs along with the deposited metal oxides (Mg2+ and/or Ce4+) increased the catalytic activity. The Mg-Ce/Al2O3 catalyst can be economically produced, has high efficiency, and is stable under acidic and alkaline conditions.

Keywords: recalcitrant petroleum; petroleum refinery; al2o3; ozonation; refinery wastewater; catalytic ozonation

Journal Title: Catalysts
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.