LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Loaded and Dispersed Ni2P/Al2O3 Catalyst with High Selectivity for Hydrogenation of Acetophenone

Photo from wikipedia

Highly loaded and dispersed Ni2P/Al2O3 catalyst was prepared by the phosphidation of Ni/Al2O3 catalyst with Ni loading of 80 wt.% in liquid phase and compared with the Ni/Al2O3 catalyst for… Click to show full abstract

Highly loaded and dispersed Ni2P/Al2O3 catalyst was prepared by the phosphidation of Ni/Al2O3 catalyst with Ni loading of 80 wt.% in liquid phase and compared with the Ni/Al2O3 catalyst for the hydrogenation of acetophenone. X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) etc. were used to characterize the textural and structural properties of the prepared catalysts. It was found that the Ni/Al2O3 and Ni2P/Al2O3 catalyst possessed high surface area, loading and dispersion. The Ni/Al2O3 catalyst had higher apparent activity while the Ni2P/Al2O3 catalyst had higher intrinsic activity for the hydrogenation of acetophenone (AP). Remarkably, the Ni2P/Al2O3 catalyst exhibited high selectivity to 1-phenylethanol, due to repulsion of the phosphorous (Pδ−) for phenyl group and attraction of the nickel (Niδ+) for oxygen atom of carbonyl group, leading to preferential hydrogenation of carbonyl group in acetophenone. The effect of the particle size of the catalyst on the chemical selectivity might be another reason for high selectivity on the Ni2P/Al2O3 catalyst.

Keywords: al2o3 catalyst; acetophenone; hydrogenation; ni2p al2o3; catalyst; selectivity

Journal Title: Catalysts
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.