LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance of an Auto-Reduced Nickel Catalyst for Auto-Thermal Reforming of Dodecane

Photo from wikipedia

To investigate the catalytic performance of diesel reforming catalysts for production of hydrogen gas, Ni-Al catalyst was prepared by the polymer-modified incipient method (NA10-PM). NA10-PM showed excellent catalytic performance and… Click to show full abstract

To investigate the catalytic performance of diesel reforming catalysts for production of hydrogen gas, Ni-Al catalyst was prepared by the polymer-modified incipient method (NA10-PM). NA10-PM showed excellent catalytic performance and economic feasibility in the auto-thermal reforming reaction, compared to other commercially available catalysts. In particular, auto-reduced NA10-PM showed higher dodecane conversion and similar selectivity at 750 ◦C compared to H2-reduced NA10-PM. X-ray diffraction (XRD) studies showed that the fresh state of NA10-PM initially automatically reduced by product gases through thermal decomposition of dodecane, and then NiAl2O4 was completely reduced to metallic nickel by the CO and H2 gases produced during the reaction. Additionally, catalytic performance of auto-reduced NA10-PM were investigated at varying steam/carbon molar ratio (S/C) and oxygen/carbon molar ratio (O2/C) in order to determine the optimum conditions of the auto-thermal reforming reaction. The conversion of dodecane over auto-reduced NA10-PM catalyst was remarkable (93%) and increased during the reaction, under conditions of S/C = 1.23, O2/C = 0.25, and gas hourly space velocity of 12,000 h−1 at 750 ◦C. The results of this study demonstrated that the auto-reduced NA10-PM catalyst was applied successfully for auto-thermal reforming of dodecane.

Keywords: auto; auto reduced; thermal reforming; dodecane; performance; auto thermal

Journal Title: Catalysts
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.