LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Full-Spectrum Photocatalytic Activity of ZnO/CuO/ZnFe2O4 Nanocomposite as a PhotoFenton-Like Catalyst

Photo by efekurnaz from unsplash

Deriving photocatalysts by the calcination of hydrotalcite-like compounds has attracted growing interest for extending their photocatalytic activity to the visible and even near-infrared (NIR) light regions. Herein, we describe the… Click to show full abstract

Deriving photocatalysts by the calcination of hydrotalcite-like compounds has attracted growing interest for extending their photocatalytic activity to the visible and even near-infrared (NIR) light regions. Herein, we describe the acquisition of a ZnO/CuO/ZnFe2O4 nanocomposite with good photoFenton-like catalytic activity under UV, visible and near-infrared (NIR) light irradiation by optimizing the calcination temperature of the coprecipitation product of Zn2+, Cu2+ and Fe3+. The ZnO/CuO/ZnFe2O4 nanocomposite is composed of symbiotic crystals of ZnO, CuO and ZnFe2O4, which enable the nanocomposite to show absorption in the UV, visible and NIR light regions and to produce a transient photocurrent in the presence of H2O2 under NIR irradiation. The full-spectrum photoFenton-like catalyst shows improved performance for the degradation of methyl orange with an increasing amount of H2O2 and is very stable in the recycling process. We believe that the ZnO/CuO/ZnFe2O4 nanocomposite is a promising full-spectrum photoFenton-like catalyst for the degradation of organic pollutants.

Keywords: znfe2o4 nanocomposite; cuo znfe2o4; photofenton like; zno cuo

Journal Title: Catalysts
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.