LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Mono-, Di-, and Triethylene Glycol on the Activity of Phosphate-Doped NiMo/Al2O3 Hydrotreating Catalysts

The effect of glycols on the catalytic properties of phosphate-doped NiMo/Al2O3 catalysts in the hydrotreating of straight-run gas oil (SRGO) was studied. The NiMo(P)/Al2O3 catalysts were prepared using ethylene glycol… Click to show full abstract

The effect of glycols on the catalytic properties of phosphate-doped NiMo/Al2O3 catalysts in the hydrotreating of straight-run gas oil (SRGO) was studied. The NiMo(P)/Al2O3 catalysts were prepared using ethylene glycol (EG), diethylene glycol (DEG), and triethylene glycol (TEG) as additives. The organic agent was introduced into the aqueous impregnation solution obtained by the dissolving of MoO3 in H3PO4 solution, followed by Ni(OH)2 addition. The Raman and UV–Vis studies show that the impregnation solution contains diphosphopentamolybdate HxP2Mo5O23(6−x)− and Ni(H2O)62+, and that these ions are not affected by the presence of glycols. When the impregnation solution comes in contact with the γ-Al2O3 surface, HxP2Mo5O23(6−x)− is decomposed completely. The catalysts were characterized by Raman spectroscopy, low-temperature N2 adsorption, X-ray photoelectron spectroscopy, and transmission electron microscopy. It is shown that the sulfide catalysts prepared with glycols display higher activity in the hydrotreating of straight-run gas oil than the NiMoP/Al2O3 catalyst prepared without the additive. The hydrodesulfurization and hydrodenitrogenation activities depend on the glycol type and are decreased in the following order: NiMoP-DEG/Al2O3 > NiMoP-EG/Al2O3 > NiMoP-TEG/Al2O3 > NiMoP/Al2O3. The higher activity of NiMoP-DEG/Al2O3 can be explained with the higher dispersion of molybdenum on the surface of the catalyst in the sulfide state.

Keywords: spectroscopy; al2o3; glycol; activity; nimo al2o3; phosphate doped

Journal Title: Catalysts
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.