LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanochemically Synthesized Supported Magnetic Fe-Nanoparticles as Catalysts for Efficient Vanillin Production

Photo from wikipedia

Magnetically separable nanocatalysts were synthesized by incorporating ironnanoparticles on a mesoporous aluminosilicate (Al-SBA-15) through a mechanochemical grindingpathway in a single step. Noticeably, magnetic features were achieved by employing biomass wasteas… Click to show full abstract

Magnetically separable nanocatalysts were synthesized by incorporating ironnanoparticles on a mesoporous aluminosilicate (Al-SBA-15) through a mechanochemical grindingpathway in a single step. Noticeably, magnetic features were achieved by employing biomass wasteas a carbon source, which additionally may confer high oxygen functionalities to the resultingmaterial. The resulting catalysts were characterized using X-ray diffraction, X-ray photoelectronspectroscopy, transmission electron microscopy, scanning electron microscopy, porosimetry, andmagnetic susceptibility. The magnetic nanocatalysts were tested in the selective oxidative cleavagereaction of isoeugenol and vanillyl alcohol to vanillin. As a result, the magnetic nanocatalystsdemonstrated high catalytic activity, chemical stability, and enormous separation/reusabilityqualities. The origin of catalytic properties and its relationship with the iron oxide precursor wereanalyzed in terms of the chemical, morphological, and structural properties of the samples. Suchanalysis allows, thus, to highlight the superficial concentration of the iron entities and the interactionwith Al as key factors to obtain a good catalytic response.

Keywords: microscopy; magnetic nanoparticles; nanoparticles catalysts; mechanochemically synthesized; supported magnetic; synthesized supported

Journal Title: Catalysts
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.