In this work, we investigate the effect of TiO2 properties on the photocatalytic selective hydrogenation of 3-nitrostyrene (3-NS) to 3-vinylaniline (3-VA). The P25-TiO2 photocatalysts were calcined at 600–900 °C using… Click to show full abstract
In this work, we investigate the effect of TiO2 properties on the photocatalytic selective hydrogenation of 3-nitrostyrene (3-NS) to 3-vinylaniline (3-VA). The P25-TiO2 photocatalysts were calcined at 600–900 °C using different gases (Air, N2, and H2) and characterized by XRD, N2 physisorption, XPS, UV-Vis, and PL spectroscopy. In the photocatalytic hydrogenation of 3-nitrostyrene in isopropanol, the selectivity of 3-vinylaniline of the treated TiO2 was almost 100%. A linear correlation between the 3-NS consumption rate and PL intensity was observed. Among the catalysts studied, P25-700-air, which possessed the lowest PL intensity, exhibited the highest photocatalytic activity due to the synergistic effect that resulted from its high crystallinity and the optimum amount of anatase/rutile phase content, leading to the reduction of the electron-hole recombination process.
               
Click one of the above tabs to view related content.