LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nitrogen and Cobalt Co-Coped Carbon Materials Derived from Biomass Chitin as High-Performance Electrocatalyst for Aluminum-Air Batteries

Photo by mattpalmer from unsplash

Development of convenient, economic electrocatalysts for oxygen reduction reaction (ORR) in alkaline medium is of great significance to practical applications of aluminum-air batteries. Herein, a biomass chitin-derived carbon material with… Click to show full abstract

Development of convenient, economic electrocatalysts for oxygen reduction reaction (ORR) in alkaline medium is of great significance to practical applications of aluminum-air batteries. Herein, a biomass chitin-derived carbon material with high ORR activities has been prepared and applied as electrocatalysts in Al-air batteries. The obtained cobalt, nitrogen co-doped carbon material (CoNC) exhibits the positive onset potential 0.86 V vs. RHE (reversible hydrogen electrode) and high-limiting current density 5.94 mA cm−2. Additionally, the durability of the CoNC material in alkaline electrolyte shows better stability when compared to the commercial Pt/C catalyst. Furthermore, the Al-air battery using CoNC as an air cathode catalyst provides the power density of 32.24 mW cm−2 and remains the constant discharge voltage of 1.17 V at 20 mA cm−2. This work not only provides a facile method to synthesize low-cost and efficient ORR electrocatalysts for Al-air batteries, but also paves a new way to explore and utilize high-valued biomass materials.

Keywords: carbon; air batteries; air; aluminum air; biomass chitin

Journal Title: Catalysts
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.