Cyclic changes, such as growth, decidualization, shedding, and regeneration, in the human endometrium are regulated by the reciprocal action of female hormones, such as estradiol (E2), and progesterone (P4). Matrix… Click to show full abstract
Cyclic changes, such as growth, decidualization, shedding, and regeneration, in the human endometrium are regulated by the reciprocal action of female hormones, such as estradiol (E2), and progesterone (P4). Matrix metalloproteases (MMPs) and tissue inhibitors of MMPs (TIMPs) control the invasion of extravillous trophoblast cells after implantation. Several MMPs and TIMPs function in the decidua and endometrial stromal cells (ESCs). Here, we aimed to systematically investigate the changes in MMPs and TIMPs associated with ESC decidualization. We evaluated the expression of 23 MMPs, four TIMPs, and four anti-sense non-coding RNAs from MMP loci. Primary ESC cultures treated with E2 + medroxyprogesterone acetate (MPA), a potent P4 receptor agonist, showed significant down-regulation of MMP3, MMP10, MMP11, MMP12, MMP20, and MMP27 in decidualized ESCs, as assessed by quantitative reverse transcription PCR. Further, MMP15 and MMP19 were significantly upregulated in decidualized ESCs. siRNA-mediated silencing of Heart and Neural Crest Derivatives Expressed 2 (HAND2), a master transcriptional regulator in ESC decidualization, significantly increased MMP15 expression in untreated human ESCs. These results collectively indicate the importance of MMP15 and MMP19 in ESC decidualization and highlight the role of HAND2 in repressing MMP15 transcription, thereby regulating decidualization.
               
Click one of the above tabs to view related content.