The microstructure, electrical conductivity, and electromagnetic interference (EMI) shielding effectiveness (SE) of CNTs/Mg Matrix composites prepared by accumulative roll bonding (ARB) were systematically investigated to understand the effects of CNTs… Click to show full abstract
The microstructure, electrical conductivity, and electromagnetic interference (EMI) shielding effectiveness (SE) of CNTs/Mg Matrix composites prepared by accumulative roll bonding (ARB) were systematically investigated to understand the effects of CNTs on the electromagnetic interference shielding effectiveness property of magnesium. A model based on the shielding of the electromagnetic plane wave was used to theoretically discuss the EMI shielding mechanisms of ARB-processed composites. The experimental results indicated that the methods were feasible to prepare laminated composites. The SE of the material increased gradually with the increase of electrophoretic deposition time. When the electrophoretic deposition time reached 8 min, the value of SE remained 87–95 dB in the frequency range of 8.2–12.4 GHz. The increase in SE was mainly attributed to the improvement in the reflection and multiple reflection losses of incident electromagnetic wave due to the increased amounts of CNTs and interfaces. The methods provided an efficient strategy to produce laminated metal matrix composites with high electromagnetic shielding properties.
               
Click one of the above tabs to view related content.