LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanical Properties and Toughening Mechanisms of Promising Zr-Y-Ta-O Composite Ceramics

Photo from wikipedia

ZrO2-YO1.5-TaO2.5 (ZYTO) composite ceramics are considered to be a candidate for next-generation thermal barrier coatings (TBCs) due to their excellent thermal stability and low thermal conductivity in high temperatures; however,… Click to show full abstract

ZrO2-YO1.5-TaO2.5 (ZYTO) composite ceramics are considered to be a candidate for next-generation thermal barrier coatings (TBCs) due to their excellent thermal stability and low thermal conductivity in high temperatures; however, the mechanical properties and fracture toughness of the ZYTO system may be shortcomings compared with 7-8YSZ: the traditional TBC. In this study, ZYTO composite ceramics were successfully prepared by chemical coprecipitation reaction, and the microstructure of resulting composites was studied as a function of the doping of M-YTaO4. Mechanical properties, including the density, porosity, hardness and Young’s modulus, were all determinate; the toughening mechanism was verified by the crack growth behavior of the Vickers indentation test. The results suggest that M-YTaO4 refined the fluorite phase grain and strengthened the grain interface in the composite ceramic. The thermal mismatch between the second phase and matrix produced residual stress in the bulk and affected the crack propagation behavior. With the increase in M-YTaO4 doping, the grain coarsening and ferroelastic domains were observed in the experiments. The ferroelastic domains with orthogonal polarization directions near the crack tip evidenced the ferroelastic toughening mechanism. The competition among these crack behaviors, such as crack deflection, bridging and bifurcation, dominated the actual fracture toughness of the composite. The best toughening formula was determined in the two-phase region, and the highest indentation fracture toughness was about 42 J/m2, which was very close to 7-8YSZ’s 45 ± 5 J/m2.

Keywords: properties toughening; composite ceramics; fracture toughness; mechanisms promising; mechanical properties; toughening mechanisms

Journal Title: Coatings
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.