In this study, we employed a polymer processing method based on solvent vapor annealing in a confined environment to swell-rich thin films of polybutadiene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) triblock copolymers and to promote… Click to show full abstract
In this study, we employed a polymer processing method based on solvent vapor annealing in a confined environment to swell-rich thin films of polybutadiene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) triblock copolymers and to promote their crystallization. As revealed by optical and atomic force microscopy, thin films of triblock copolymers containing a rather short crystalline poly(ethylene oxide) block that was massively obstructed by the other two blocks were unable to crystallize following the spin-casting process, and their further swelling in solvent vapors was necessary in order to produce polymeric crystals displaying a dendritic morphology. In comparison, thin films of triblock copolymers containing a much longer poly(ethylene oxide) block that was less obstructed by the other two blocks were shown to crystallize into dendritic structures right after the spin-casting procedure, as well as upon rich swelling in solvent vapors.
               
Click one of the above tabs to view related content.