LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphology and Composition of the Third Body on the Friction Surface of an Organic Composite Railway Brake Shoe

Photo from wikipedia

Friction properties are significantly affected by third bodies (films formed on friction surfaces). However, the study of their composition and structure remains incomplete. For this reason, an organic composite railway… Click to show full abstract

Friction properties are significantly affected by third bodies (films formed on friction surfaces). However, the study of their composition and structure remains incomplete. For this reason, an organic composite railway brake shoe was tested at an initial braking speed of 125 km/h using a full-scale dynamometer. A third body with a thickness of ~120 μm was obtained, and its morphology and composition were analyzed using a multiple techniques. The results indicated that the third body had a layered structure. The upper surface was smoother than the lower surface. The carbon content on the upper surface decreased by 68.01%, and the iron content increased by 11.85 times in relation to that on the lower surface. Compared to the brake shoe, the iron content of the third body increased by 272.81%, and most of the iron was oxidized. Furthermore, the content of barium, calcium, and silicon decreased by more than 33%, and the crystalline structures of the inorganic filler materials, such as graphite and barium sulfate, were destroyed, with new crystalline structures appearing. Finally, the residual weight at 650 °C increased from 90.35% to 96.59%. This research could provide a reference for exploring the friction and wear mechanisms of organic composite railway brake shoes.

Keywords: friction; surface; composite railway; third body; organic composite

Journal Title: Coatings
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.