LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of HfO2 Particles on Ceramic Coating Fabricated on Ti6Al4V Alloy via Plasma Electrolytic Oxidation

Hafnium dioxide (HfO2) has a wide bandgap and high dielectric constant. We prepared ceramic coatings on Ti6Al4V alloys via plasma electrolytic oxidation (PEO) in an electrolyte with HfO2 particles. The… Click to show full abstract

Hafnium dioxide (HfO2) has a wide bandgap and high dielectric constant. We prepared ceramic coatings on Ti6Al4V alloys via plasma electrolytic oxidation (PEO) in an electrolyte with HfO2 particles. The influence of the HfO2 particles on the microstructure, phase composition, elemental distribution, and corrosion resistance of the PEO coatings was systematically investigated. The results showed that the addition of HfO2 increased the oxidation voltage (from 462 to 472 V) and promoted the microarc sintering reaction so that the thickness and hardness of the resulting PEO coating increased. Moreover, the quantity of the micropores on the coating surface caused by the discharge decreased after adding the HfO2 particles. The X-ray diffraction patterns confirmed that the HfO2 particles were incorporated into the coating by remelting and sintering the microarc. Furthermore, the corrosion resistance of the PEO coating was remarkably increased after introducing HfO2, which was attributed to the increase in the electrode potential and the densification of the coating structure.

Keywords: via plasma; hfo2; plasma electrolytic; hfo2 particles; electrolytic oxidation

Journal Title: Coatings
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.