LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantification of Thermal Barrier Efficiency of Intumescent Coatings on Glass Fibre-Reinforced Epoxy Composites

Photo from wikipedia

In this work, the thermal barrier efficiency of three commercial intumescent coatings of varying thicknesses on glass fibre-reinforced epoxy (GRE) composites has been studied using cone calorimetric parameters and temperature… Click to show full abstract

In this work, the thermal barrier efficiency of three commercial intumescent coatings of varying thicknesses on glass fibre-reinforced epoxy (GRE) composites has been studied using cone calorimetric parameters and temperature profiles through the thicknesses, obtained by inserting thermocouples in the sample during the experiment. The methodologies developed to measure char expansion of the three coatings during the cone experiment as well under slow heating conditions using an advanced rheometric expansion system have been discussed. While the expansion ratios in the two experiments were different, the trends were similar. Thermal conductivities of the chars as a function of time were measured, which could be related to the intumescence steps of respective coatings. The accurate measurements of these parameters are important in predicting the surface requirements of an ideal coating that can enable a given composite structure to survive a defined thermal threat for a specified period of time.

Keywords: glass fibre; intumescent coatings; fibre reinforced; barrier efficiency; thermal barrier; reinforced epoxy

Journal Title: Coatings
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.