LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Different ZrN Addition on Microstructure and Wear Properties of Titanium Based Coatings by Laser Cladding Technique

Photo by profwicks from unsplash

In order to improve the wear resistance of TC11 titanium alloy, a mixture of ZrN (10 wt.%, 20 wt.%, 30 wt.%, and 40 wt.%) and TC11 alloy powders are laser… Click to show full abstract

In order to improve the wear resistance of TC11 titanium alloy, a mixture of ZrN (10 wt.%, 20 wt.%, 30 wt.%, and 40 wt.%) and TC11 alloy powders are laser cladded on a forged TC11 substrate. The microstructure and wear property of coatings are systematically analyzed. The results show that the microstructure of sample with 10 wt.% ZrN addition has a very fine α + β two-phase microstructure, powders of ZrN are fully melted with no new phase appearance. By increasing the amount of ZrN to 20 wt.%, new phases of TiN0.3 precipitate with the dendritic morphology in the coating. A further increase in ZrN to 30 wt.% and 40 wt.% do not significantly change the microstructure of the cladded layer but increase the microhardness significantly, phases of TiN form with further enhancement of coating hardness. At the bottom of the cladded layer, the morphology of TiN0.3 and TiN precipitations changes into a spherical shape with small size. However, the wear performance of the coatings gradually reduces due to the increase of brittleness, and the superior wear properties of the coating are achieved when sample consisted of 20 wt.% ZrN.

Keywords: zrn addition; microstructure; zrn; microstructure wear; wear properties

Journal Title: Coatings
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.