The rising rate of individuals with chronic kidney disease (CKD) and ineffective treatment methods for catheter-associated infections in dialysis patients has led to the need for a novel approach to… Click to show full abstract
The rising rate of individuals with chronic kidney disease (CKD) and ineffective treatment methods for catheter-associated infections in dialysis patients has led to the need for a novel approach to the manufacturing of catheters. The current process requires moulding, which is time consuming, and coated catheters used currently increase the risk of bacterial resistance, toxicity, and added expense. Three-dimensional (3D) printing has gained a lot of attention in recent years and offers the opportunity to rapidly manufacture catheters, matched to patients through imaging and at a lower cost. Fused deposition modelling (FDM) in particular allows thermoplastic polymers to be printed into the desired devices from a model made using computer aided design (CAD). Limitations to FDM include the small range of thermoplastic polymers that are compatible with this form of printing and the high degradation temperature required for drugs to be extruded with the polymer. Hot-melt extrusion (HME) allows the potential for antimicrobial drugs to be added to the polymer to create catheters with antimicrobial activity, therefore being able to overcome the issue of increased rates of infection. This review will cover the area of dialysis and catheter-related infections, current manufacturing processes of catheters and methods to prevent infection, limitations of current processes of catheter manufacture, future directions into the manufacture of catheters, and how drugs can be incorporated into the polymers to help prevent infection.
               
Click one of the above tabs to view related content.