LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fatigue and Mechanical Behavior of Ti-6Al-4V Alloy with CrN and TiN Coating Deposited by Magnetic Filtered Cathodic Vacuum Arc Process

Photo from wikipedia

Coatings of 3 μm CrN and TiN were prepared by a magnetic filtered cathodic vacuum arc process (MFCVA) on Ti-6Al-4V substrates, respectively. Rotating bending tests and uniaxial tests were conducted… Click to show full abstract

Coatings of 3 μm CrN and TiN were prepared by a magnetic filtered cathodic vacuum arc process (MFCVA) on Ti-6Al-4V substrates, respectively. Rotating bending tests and uniaxial tests were conducted for investigating the effect of the thin and uniformly distributed hard CrN and TiN coatings on the fatigue and mechanical properties of Ti-6Al-4V substrate. During both tests, no coating spallation phenomenon was observed, which indicated that the hard coating bound well with the substrate. The fatigue test results showed that the fatigue strength of the coated sample was decreased in both the low- and high-cycling fatigue regimes compared with the uncoated Ti-6Al-4V substrate. Compared with the TiN coating, the CrN coating caused a more significant reduction on the fatigue property of the uncoated Ti-6Al-4V substrate due to its inferior plastic deformation capacity. Furthermore, the tensile test results showed that the coated sample had a relative higher ultimate strength, yield strength, and lower elongation compared with the uncoated Ti-6Al-4V substrate. This may be due to the fact that the hard coating could suppress the initiation of cracks, and so higher stress was needed for crack initiating. During the crack propagation period, the hard coating cracked at a relative higher velocity, which led to cracking of the ductile substrate and elongation reduction.

Keywords: coating; tin; magnetic filtered; crn tin; substrate

Journal Title: Coatings
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.