Polyaniline (PANI) thin films incorporated with TiO2 or ZnO nanoparticles were synthesized via an electrochemical polymerization technique. Cyclic voltammetry (CV) was used to synthesize PANI from a strongly acidic medium… Click to show full abstract
Polyaniline (PANI) thin films incorporated with TiO2 or ZnO nanoparticles were synthesized via an electrochemical polymerization technique. Cyclic voltammetry (CV) was used to synthesize PANI from a strongly acidic medium (0.5 M H2SO4). The effects of different deposition cycles on the morphology, thickness, color, and properties of electrodeposited PANI thin films nanocomposites were investigated. Furthermore, the effects of the nanoparticles concentration on the morphology and water contact angle (CA) of the produced coating were investigated. Field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) were used to investigate the morphological structure. X-ray photoelectron spectroscopy (XPS) was used to study the surface composition of the formed film. The results reveal that the CA of the prepared coating reached 146°. A granular morphology of PANI with a moderate concentration of nanoparticles was obtained. In addition, XPS analysis confirmed the incorporation of the oxide nanoparticles in the matrix.
               
Click one of the above tabs to view related content.