Scintillation single crystal fibers (SCFs) have great potential applications in the new generation of high-energy ray and particle detectors due to their morphological advantages. In this work; Ce:LuAG SCFs with… Click to show full abstract
Scintillation single crystal fibers (SCFs) have great potential applications in the new generation of high-energy ray and particle detectors due to their morphological advantages. In this work; Ce:LuAG SCFs with a diameter of 1 mm were grown along the direction of [111] by laser-heated pedestal growth (LHPG) method using a transparent ceramic as the source rod; and a doping concentration was 0.1 at%, 0.3 at%, 1 at%, respectively. The effects of growth rate and annealing in air on the scintillation and optical properties of SCF are discussed in detail. The results of analyzing the absorption spectra; radioluminescence (RL) spectra; pulse-height spectra and fluorescence lifetime of SCFs show that the SCF maintains excellent scintillation performance while having a fiber structure. Therefore; Ce:LuAG SCF is a potential candidate material for detector.
               
Click one of the above tabs to view related content.