LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Removal of Toluidine Blue and Safranin O from Single and Binary Solutions Using Zeolite

Photo from academic.microsoft.com

The studies on dye removal from solutions attracted great attention due to the increased use of color dyes in different fields. However, most of the studies were focused on dye… Click to show full abstract

The studies on dye removal from solutions attracted great attention due to the increased use of color dyes in different fields. However, most of the studies were focused on dye removal from a single solution. In reality, wastewater from the fabric industry could contain mixed dyes. As such, evaluating different dye removal from mixed solutions may have more practical importance. In terms of sorbents evaluated for dye removal, most of them were an organic type generated from agricultural wastes. Clay minerals and zeolites were also studied extensively, because of the vast reserves, inexpensive material cost, larger specific surface area (SSA) and high cation exchange capacity (CEC). However, evaluating the factors controlling the dye removal from mixed dye solutions was limited. In this study, the removal of cationic dyes safranin O (SO) and toluidine blue (TB) by clinoptilolite zeolite (ZEO) was evaluated under single and binary systems. The results showed that removal of TB was preferred over SO by approximately a 2:1 ratio. The counterion Cl− sorption from mixed dye solution helped the formation of mixed dye aggregates on mineral surfaces. Molecular dynamic simulation confirmed the multilayer mixed dye formation on ZEO under high loading levels.

Keywords: mixed dye; single binary; dye removal; removal; toluidine blue

Journal Title: Crystals
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.