Concrete curing under sub-zero temperatures causes various problems, such as initial cracking and a decrease in mechanical strength. This study investigated the effect of sub-zero ambient temperature and multi-walled carbon… Click to show full abstract
Concrete curing under sub-zero temperatures causes various problems, such as initial cracking and a decrease in mechanical strength. This study investigated the effect of sub-zero ambient temperature and multi-walled carbon nanotube (MWCNT) content on the heat and strength characteristics of heat-cured MWCNT cementitious composites. The experimental parameters were the application of heat curing, MWCNT content, use of an insulation box to achieve a closed system, and ambient temperature. The results showed that the internal temperature change of the MWCNT cementitious composite increased with the ambient temperature and MWCNT content. When an insulation box was installed, the maximum temperature change of the MWCNT cementitious composite during curing increased. Furthermore, heat curing increased the compressive strength of the cementitious composite. Moreover, a microstructure analysis using field-emission scanning electron microscopy verified the formation of a MWCNT network among the cement hydrates.
               
Click one of the above tabs to view related content.