LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent Developments of Carbon-Based Anode Materials for Flexible Lithium-Ion Batteries

Photo from wikipedia

Flexible lithium-ion batteries (FLIBs) have rapidly developed as promising energy storage devices for flexible and wearable electronics, owning to the advantages of high energy density, fast charge–discharge, no memory effect… Click to show full abstract

Flexible lithium-ion batteries (FLIBs) have rapidly developed as promising energy storage devices for flexible and wearable electronics, owning to the advantages of high energy density, fast charge–discharge, no memory effect and stable cycle performance. Research on flexible electrodes has attracted widespread attention to maintain stable electrochemical function under deformation. Carbon materials are some of the most popular lithium-ion battery (LIB) anode materials owing to their low cost, high conductivity and excellent stability. However, the scaled-up fabrication of flexible electrodes based on carbon-based materials for high-performance FLIBs is still challenging. Herein, the fabrication strategies for FLIBs based on carbon materials such as carbon nanofibers (CNFs), carbon nanotubes (CNTs), graphene, graphdiyne (GDY) and carbon aerogels (CAs) are reviewed in terms of macroscopic electrode material preparation, property optimization and structure design. Furthermore, fabrication strategies and structure design methods for electrodes are proposed to improve energy capacity, cycle stability, conductivity and flexibility of FLIBs. This minireview can offer potential directions for the novel design of flexible carbon-based anodes employed in FLIBs.

Keywords: carbon based; carbon; ion batteries; lithium ion; flexible lithium

Journal Title: Crystals
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.