LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Correlation between Mechanical Properties—Structural Characteristics and Cavitation Resistance of Cast Aluminum Alloy Type 5083

Photo by kellysikkema from unsplash

The aluminum alloy type 5083, which has high corrosion resistance, excellent weldability, and good strength, is widely used in shipbuilding, automotive, aerospace, and industrial construction. The present paper has the… Click to show full abstract

The aluminum alloy type 5083, which has high corrosion resistance, excellent weldability, and good strength, is widely used in shipbuilding, automotive, aerospace, and industrial construction. The present paper has the aim of establishing a possible correlation between mechanical properties, structural characteristics, and cavitation erosion properties of the 5083 alloy after applying different heat treatments. Different homogenization heat treatments (350 °C, 450 °C) were applied, each followed by cooling in air and artificial aging at different temperature (140 °C and 180 °C) with three maintenance periods, 1 h, 12 h, and 24 h. The experiments concerning cavitation resistance of the experimental samples were completed in accordance with ASTM G32-2016. The cavitation erosion resistance were determined either by analytical diagrams MDER (or MDE) vs. cavity attack duration, or by measuring the maximum erosion attack by stereomicroscopy and scanning electron microscopy. Finally, the best combination of heat treatments applied to cast aluminum products type 5083 is homogenization at 350 °C followed by artificial aging at 180 °C, at which the highest mechanical characteristics are obtained, a resilience of 25 J/cm2, a grain size of 140–180 μm, and a maximum depth of the erosion MDEmax around 14–17 µm.

Keywords: alloy type; aluminum alloy; cavitation; correlation mechanical; type 5083; resistance

Journal Title: Crystals
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.