LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improvement of Mg-Doped GaN with Shutter-Controlled Process in Plasma-Assisted Molecular Beam Epitaxy

Photo from wikipedia

Mg-doped GaN was grown by plasma-assisted molecular beam epitaxy (PAMBE) on a Fe-doped GaN template substrate by employing a shutter-controlled process. The transition from n-type to p-type conductivity of Mg-doped… Click to show full abstract

Mg-doped GaN was grown by plasma-assisted molecular beam epitaxy (PAMBE) on a Fe-doped GaN template substrate by employing a shutter-controlled process. The transition from n-type to p-type conductivity of Mg-doped GaN in relation to the N/Ga flux ratio was studied. The highest p-type carrier concentration in this series was 3.12 × 1018 cm−3 under the most N-rich condition. By modulating the shutters of different effusion cells for the shutter-controlled process, a wide growth window for p-type GaN was obtained. It was found that the presence of Mg flux effectively prevents the formation of structural defects in GaN epi-layers, resulting in the improvement of crystal quality and carrier mobility.

Keywords: shutter controlled; molecular beam; plasma assisted; controlled process; assisted molecular; doped gan

Journal Title: Crystals
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.