LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magneto-Optical Isolator Based on Ultra-Wideband Photonic Crystals Waveguide for 5G Communication System

Photo from wikipedia

This paper presents a novel magneto-optical isolator based on an ultra-wideband and high efficiency photonic crystals (PCs) waveguide and gyromagnetic ferrites. The three-dimensional numerical simulation finds that the photonic crystals… Click to show full abstract

This paper presents a novel magneto-optical isolator based on an ultra-wideband and high efficiency photonic crystals (PCs) waveguide and gyromagnetic ferrites. The three-dimensional numerical simulation finds that the photonic crystals waveguide’s (PCW) transmission efficiency rises with its height and width. The corresponding experiments are performed by using a triangular lattice Al2O3 dielectric posts array in 5G millimeter wave band. The measured transmission efficiency is up to 90.78% for the optimal PCs waveguide structure, which has ultra-wide operating bandwidth from 23.45 to 31.25 GHz. The magneto-optical isolator is designed by inserting two rectangular gyromagnetic ferrites into the PCs waveguide. Due to the contrast between the effective permeability of the left and right circular polarization waves passing through the magnetized ferrite sheets, the ferromagnetic resonance absorption of the forward and reverse waves is different. By using finite element method, the isolation is optimized to be 49.49 dB for the isolator and its relative bandwidth reaches 8.85%. The high isolation, broadband, and easy integration indicate that our designed magneto-optical isolator has significant advantage in 5G communication systems.

Keywords: isolator based; isolator; based ultra; optical isolator; magneto optical; photonic crystals

Journal Title: Crystals
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.