Organisms that modify the availability of abiotic resources for other species can alter the structure and function of ecological communities through multiple pathways. In Florida Bay, red grouper (Epinephelus morio)… Click to show full abstract
Organisms that modify the availability of abiotic resources for other species can alter the structure and function of ecological communities through multiple pathways. In Florida Bay, red grouper (Epinephelus morio) engineer habitats by excavating sediment and detritus from karst solution holes and are also predators that consume a variety of benthic crustaceans and fish, some of which colonize engineered habitats. The effect of red grouper on these communities is complex as colonizing species interact with red grouper in different ways, including both direct (e.g., predator–prey) and indirect interactions. Here, I present the results of an experiment designed to test the direct effects of red grouper on faunal communities associated with Florida Bay solution holes by excluding red grouper from solution holes for four weeks. Red grouper presence generally had positive effects on the abundance, richness, and diversity of faunal communities associated with engineered habitats. Few strong interactions were observed between red grouper and colonizing species, mainly juvenile coral reef fishes. These results suggest that by acting as both a predator and habitat engineer, red grouper shape unique communities, distinct from those of surrounding areas, and influence the composition of communities associated with manipulated habitats.
               
Click one of the above tabs to view related content.