In aquatic settings, animals directly affect ecosystem functions through excretion of dissolved nutrients. However, the comparative role of egestion as an animal-mediated nutrient flux remains understudied. We conducted a literature… Click to show full abstract
In aquatic settings, animals directly affect ecosystem functions through excretion of dissolved nutrients. However, the comparative role of egestion as an animal-mediated nutrient flux remains understudied. We conducted a literature survey and meta-analysis to directly compare nitrogen (N), phosphorus (P), and N:P of egestion compared to excretion rates and ratios across freshwater animals. Synthesizing 215 datasets across 47 animal species (all primary consumers or omnivores), we show that the total N and P egestion rates exceed inorganic N and P excretion rates but not total N and P excretion rates, and that proportions of P egested compared to excreted depend on body size and animal phylum. We further show that variance of egestion rates is often greater than excretion rates, reflecting greater inter-individual and temporal variation of egestion as a nutrient flux in comparison to excretion. At phylogenetic levels, our analysis suggests that Mollusca exhibit the greatest rates and variance of P egestion relative to excretion, especially compared to Arthropoda. Given quantitative evidence of egestion as a dominant and dynamic animal-mediated nutrient flux, our synthesis demonstrates the need for additional studies of rates, stoichiometry, and roles of animal egestion in aquatic settings.
               
Click one of the above tabs to view related content.