Understanding the genetic structure and differentiation in endangered species is of significance in detecting their phylogenetic relationships and prioritizing conservation. Here we sampled five endangered Cycas species endemic to southwest… Click to show full abstract
Understanding the genetic structure and differentiation in endangered species is of significance in detecting their phylogenetic relationships and prioritizing conservation. Here we sampled five endangered Cycas species endemic to southwest China and genotyped genetic structure and differentiation among them using the genotyping-by-sequencing (GBS) method. C. hongheensis showed high genetic diversity, but the other four species showed low genetic diversity. The genetic diversity between wild and cultivated populations was similar for C. debaoensis and C. guizhouensis, respectively. Low genetic differentiation and high gene flow were found among C. debaoensis, C. guizhouensis, and C. fairylakea, and C. hongheensis differentiated from them at ~1.74 Mya. TreeMix results showed historic migration events from C. guizhouensis to C. hongheensis, showing southward migration pathways. C. hongheensis showed increased effective population size with time, while the other four species underwent bottleneck events at ~1–5 Mya when continuous cooling events occurred. Our results indicate that the migration, differentiation, and speciation of Cycas species are associated with historical cooling events.
               
Click one of the above tabs to view related content.