LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automated Breast Volume Scanner (ABVS)-Based Radiomic Nomogram: A Potential Tool for Reducing Unnecessary Biopsies of BI-RADS 4 Lesions

Photo by nci from unsplash

Improving the assessment of breast imaging reporting and data system (BI-RADS) 4 lesions and reducing unnecessary biopsies are urgent clinical issues. In this prospective study, a radiomic nomogram based on… Click to show full abstract

Improving the assessment of breast imaging reporting and data system (BI-RADS) 4 lesions and reducing unnecessary biopsies are urgent clinical issues. In this prospective study, a radiomic nomogram based on the automated breast volume scanner (ABVS) was constructed to identify benign and malignant BI-RADS 4 lesions and evaluate its value in reducing unnecessary biopsies. A total of 223 histologically confirmed BI-RADS 4 lesions were enrolled and assigned to the training and validation cohorts. A radiomic score was generated from the axial, sagittal, and coronal ABVS images. Combining the radiomic score and clinical-ultrasound factors, a radiomic nomogram was developed by multivariate logistic regression analysis. The nomogram integrating the radiomic score, lesion size, and BI-RADS 4 subcategories showed good discrimination between malignant and benign BI-RADS 4 lesions in the training (AUC, 0.959) and validation (AUC, 0.925) cohorts. Moreover, 42.5% of unnecessary biopsies would be reduced by using the nomogram, but nine (4%) malignant BI-RADS 4 lesions were unfortunately missed, of which 4A (77.8%) and small-sized (<10 mm) lesions (66.7%) accounted for the majority. The ABVS radiomics nomogram may be a potential tool to reduce unnecessary biopsies of BI-RADS 4 lesions, but its ability to detect small BI-RADS 4A lesions needs to be improved.

Keywords: automated breast; radiomic nomogram; unnecessary biopsies; rads lesions; reducing unnecessary

Journal Title: Diagnostics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.