Aim: In this comprehensive review we present an update on the most relevant studies evaluating the utility of amino acid PET radiotracers for the evaluation of glioma recurrence as compared… Click to show full abstract
Aim: In this comprehensive review we present an update on the most relevant studies evaluating the utility of amino acid PET radiotracers for the evaluation of glioma recurrence as compared to magnetic resonance imaging (MRI). Methods: A literature search extended until June 2020 on the PubMed/MEDLINE literature database was conducted using the terms “high-grade glioma”, “glioblastoma”, “brain tumors”, “positron emission tomography”, “PET”, “amino acid PET”, “[11C]methyl-l-methionine”, “[18F]fluoroethyl-tyrosine”, “[18F]fluoro-l-dihydroxy-phenylalanine”, “MET”, “FET”, “DOPA”, “magnetic resonance imaging”, “MRI”, “advanced MRI”, “magnetic resonance spectroscopy”, “perfusion-weighted imaging”, “diffusion-weighted imaging”, “MRS”, “PWI”, “DWI”, “hybrid PET/MR”, “glioma recurrence”, “pseudoprogression”, “PSP”, “treatment-related change”, and “radiation necrosis” alone and in combination. Only original articles edited in English and about humans with at least 10 patients were included. Results: Forty-four articles were finally selected. Conventional amino acid PET tracers were demonstrated to be reliable diagnostic techniques in differentiating tumor recurrence thanks to their high uptake from tumor tissue and low background in normal grey matter, giving additional and early information to standard modalities. Among them, MET–PET seems to present the highest diagnostic value but its use is limited to on-site cyclotron facilities. [18F]labelled amino acids, such as FDOPA and FET, were developed to provide a more suitable PET tracer for routine clinical applications, and demonstrated similar diagnostic performance. When compared to the gold standard MRI, amino acid PET provides complementary and comparable information to standard modalities and seems to represent an essential tool in the differentiation between tumor recurrence and other entities such as pseudoprogression, radiation necrosis, and pseudoresponse. Conclusions: Despite the introduction of new advanced imaging techniques, the diagnosis of glioma recurrence remains challenging. In this scenario, the growing knowledge about imaging techniques and analysis, such as the combined PET/MRI and the application of artificial intelligence (AI) and machine learning (ML), could represent promising tools to face this difficult and debated clinical issue.
               
Click one of the above tabs to view related content.