LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance of Convolutional Neural Networks for Polyp Localization on Public Colonoscopy Image Datasets

Photo from wikipedia

Colorectal cancer is one of the most frequent malignancies. Colonoscopy is the de facto standard for precancerous lesion detection in the colon, i.e., polyps, during screening studies or after facultative… Click to show full abstract

Colorectal cancer is one of the most frequent malignancies. Colonoscopy is the de facto standard for precancerous lesion detection in the colon, i.e., polyps, during screening studies or after facultative recommendation. In recent years, artificial intelligence, and especially deep learning techniques such as convolutional neural networks, have been applied to polyp detection and localization in order to develop real-time CADe systems. However, the performance of machine learning models is very sensitive to changes in the nature of the testing instances, especially when trying to reproduce results for totally different datasets to those used for model development, i.e., inter-dataset testing. Here, we report the results of testing of our previously published polyp detection model using ten public colonoscopy image datasets and analyze them in the context of the results of other 20 state-of-the-art publications using the same datasets. The F1-score of our recently published model was 0.88 when evaluated on a private test partition, i.e., intra-dataset testing, but it decayed, on average, by 13.65% when tested on ten public datasets. In the published research, the average intra-dataset F1-score is 0.91, and we observed that it also decays in the inter-dataset setting to an average F1-score of 0.83.

Keywords: neural networks; public colonoscopy; convolutional neural; image datasets; colonoscopy image; performance

Journal Title: Diagnostics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.